

How Efficient is Time-Integration for Equilibrium Passive Sampling?

Oindrila Ghosh, Songjing Yan, Mandar Bokare, Upal Ghosh

Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County

PASSIVE SAMPLING

Freely dissolved conc. of contaminant in water column/interstitial water (ug/L) [Ghosh et al., 2014]

Simulations of COC accumulation

1st Order Model

1D Fick's Diffusion Model

AIM

- In the real environment, water concentrations of these HOCs vary temporally.
- Important for ecological exposure assessment.
- How well passive sampler concentrations represent the time-averaged concentration over an entire deployment period?

METHODS: PRC CORRECTION

PERFORMANCE REFERENCE COMPOUND CORRECTION FOR EQUILIBRIUM

 $Corrected\ Mass\ of\ PCB\ Uptake = \frac{Actual\ Mass\ Gained}{Fraction\ of\ Loss}$

$$C_{w} = \frac{Corrected \; Mass \; of \; PCB \; Uptake}{K_{PEW}}$$

INITIAL CONDITIONS: Water concentration varies from 1ng/L to 0.1ng/L.

METHODS: FIRST ORDER & DIFFUSION MODELS

FIRST ORDER MODEL

Governing Equation:

Calculation of Mass of PCB accumulated in PE (C_{PE})

$$\frac{dC_{PE}}{dt} = k_u C_w - k_e C_{PE}$$

Calculation of Mass of PCB accumulated in PE at Equilibrium (C_{PE_Eq})

$$C_{PE\ Eq} = C_{PE}/(1 - e^{-k_e T})$$

condition.

FICK'S DIFFUSION MODEL

Governing Equation: System of well mixed infinite water bath

Eq 1
$$\frac{\partial C_{PE}}{\partial t} = D_{PE} \frac{\partial^2 C_{PE}}{\partial x^2}$$

for
$$-l < x < l$$

Eq 2
$$\frac{\partial C_W}{\partial t} = D_W \frac{\partial^2 C_W}{\partial x^2}$$

for
$$-l > x > -(l+b)$$
 and $1 < x < (l+b)$

Eq 3

Boundary Conditions:

At the interface of the PE and water, the diffusive fluxes match so that mass is conserved

$$D_{PE} \frac{dC_{PE}}{dx} = D_W \frac{dC_W}{dx}$$
 for $x = l$ and $x = -l$

local equilibrium distribution

$$C_{PE} = K_{PEW} C_W$$
 at $x = l$ and $x = -l$

Impact of a 10-day long perturbation on the uptake of PCB 37

Effect of 10-day long perturbation on the uptake of different PCB homologs

Impact of various PE thickness on the uptake of PCB 37

CONCLUSION

 Is there a time period beyond which a perturbation in concentration is not captured in the passive sampling time-integration?

THANK YOU

FINITE SOLUTION OF DIFFUSION MODEL

$$c_{i,j+1} = c_{i,j} + r(c_{i-1,j} - 2c_{i,j} + c_{i+1,j}),$$

 $r = \delta T / (\delta X)^2.$ r<0.5

Analytical solution in Tcacuic et al, 2015

Our Model

[wbl:0.02cm, 25um PE; Infinite Water Bath]

[r=0.3; dt=0.1s]

INITIAL CONDITIONS:

1. NO STORM CONDITION

Water: 1 ng/L

• PE: 0 ng/L

2. Storm

Water: 0.1ng/L

Impact of 1-day long storms on different days during the deployment period on the uptake of PCB 37

Impact of 1-day long storms on different days during the deployment period on the uptake of PCB 37

1st ORDER MODEL

Impact of Periodic Storms on the Uptake of Various Homologs

Impact of Varying Water Boundary Layer (WBL) Thickness on the Uptake of PCB 37

